本文研究在马尔科夫状态下具有Beddington-DeAngeis功能反应发生率的SVIR传染病模型的动力学问题.首先,得到系统具有唯一的全局正解;然后,通过构造恰当的李雅普诺夫函数得到:当R0s> 1时,系统存在平稳分布;当R0e<1时,疾病将会指数灭绝;最后通过数值模拟对本文主要理论的可行性进行验证.