摘要
针对人脸超分辨率算法中图像失真大、缺乏细节特征等问题,提出了一种基于先验知识的人脸超分辨率重建模型。通过在超分网络中加入纹理辅助分支,为重建过程提供额外纹理结构先验,以生成精细的面部纹理,恢复高分辨率纹理图。同时引入级联叠加模块对纹理辅助分支进行反馈。设计特征融合模块,将纹理特征图与超分分支特征图融合,获得更好的纹理细节;将纹理损失融入损失函数,以提高网络恢复纹理细节的能力。4倍放大因子下,该方法的峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)、结构相似性指数(Structural Similarity Index, SSIM)比现有方法至少提升1.082 5 dB和0.036,无参考图像质量评价(Natural Image Quality Evaluator, NIQE)至少降低1.690 2;8倍放大因子下,该方法的PSNR与SSIM值分别至少提升0.787 5 dB和0.046 85,NIQE值最小降低3.92。
- 单位