摘要

准确地定位出人眼位置并分离出虹膜、眼睑等区域对虹膜识别、人脸识别等生物特征识别技术具有重要意义.但是,在非理想环境下,人眼图像分辨率通常较低,并且容易受到光照条件、睫毛、阴影等噪声影响,对人眼区域进行正确分割是一项非常具有挑战性的工作.因此,本文针对姿态幅度较小的无遮挡人眼图像分割存在的一些问题,利用Hough圆变换和形态学算法改进低分辨率下人眼的定位.该方法首先利用现有的人脸对齐方法分割出人眼感兴趣区域,采用双线性插值法对人眼图像进行预处理,去除镜面反射光斑;然后根据人眼图像中各区域的灰度分布规律,利用带约束的Hough圆检测算法定位出虹膜;之后结合全局动态阈值、局部自适应阈值及形态学算法分别定位出人眼上下眼睑,并利用最小二乘法拟合上下眼睑,最终分割出人眼虹膜、上下眼睑、巩膜等区域;最后在UBIRIS v1.0数据库及低分辨率人脸图像上对本文提出的算法进行测试.实验结果表明,本文提出的方法对实验室环境下高清虹膜图像及低分辨率人脸图像上的人眼定位均具有较强的鲁棒性.

全文