摘要
为了研究人工神经网络在压气机性能曲线拟合中的应用,分别利用BP神经网络、RBF神经网络、极限学习机以及BP-GA神经网络对某微型燃气轮机压气机的性能映射关系进行模拟,分析了不同网络模型在压气机特性曲线拟合上的优劣,以及样本容量对不同神经网络模型性能的影响。结果表明:BP-GA神经网络模型不仅收敛速度快,而且精度高;相比传统BP神经网络模型,其平均绝对百分比误差可控制在0.189%以内,训练时间可缩短至19.07 s;当样本容量较少时,传统BP神经网络模型不再适用,而基于遗传算法的BP-GA模型仍然保持较高的精度。
- 单位