摘要

为了提高稀疏栈式编码对车型识别确率,提出了一种基于改进稀疏栈式编码的车型识别方法。使用逐层无监督方法来训练网络结构,并从大量的无标记的数据集中学习得到特征字典,在稀疏栈式编码的基础上引入卷积和池化模块,把学习得到的特征字典作为卷积核,通过对含有车辆的图像进行卷积和池化操作获得图像的特征图;最后通过使用softmax分类器在少量标签数据集上进行有监督的微调。在BIT-Vehicle数据集上的实验结果表明,改进后的算法优于传统稀疏栈式编码算法,在标注较少的数据集中,识别的准确率优于神经网络算法。