摘要
本研究以大豆为研究对象,利用光谱仪测定大豆鼓粒期冠层高光谱数据并计算多种高光谱植被指数。分别采用一元线性回归(LR)、支持向量机(SVM)、反向传播神经网络(BPNN)和随机森林(RF)建立高光谱植被指数组合和大豆地上部生物量之间相互关系的数学模型。结果显示:基于LR、SVM、BPNN和RF建立的估算AGB模型的决定系数(R2)分别为0.59,0.71,0.73和0.76;均方根误差(RMSE)分别为2 559.0,481.1,1 194.6和805.2 kg·hm-2;相对分析误差(RPD)分别为1.22,1.55,1.87和1.92。基于RF建立模型的预测精准度比LR、SVM和BPNN模型更可靠,因此运用RF模型可以更精确地估算大豆地上部生物量。
- 单位