摘要

我国城市化发展迅速,地表利用信息处于不断变动中,及时掌握这些变化信息十分必要。但实际作业中,变化信息获取方式仍然以高人力成本方法,如实地外业调查或者目视遥感影像判读为主,生产效率低。因此,本文提出了一种基于语义分割的深度学习变化检测方法。首先,利用编码-解码深度卷积网络,实现遥感影像地物的自动分类;然后,利用Mean-Shift方法分割前后期影像,融合其光谱、纹理和语义信息等特征,对比前后期影像的特征差异,提取出变化置信度图;最后通过EM算法分割变化与未变化类生成二值变化图,得出变化区域范围。该方法为自动化实现地物变化监测提供了有效的解决办案,实验证明,该方法相比人工以及传统分类模型具有更好的检测精度,有效降低了内外业工作量。