一种基于WGAN模型的行人检测方法

作者:周智恒; 李立军; 胥静; 朱湘军; 李利苹; 汪壮雄
来源:2017-11-14, 中国, CN201711124627.8.

摘要

本发明公开了一种基于WGAN模型的行人检测方法,属于深度学习神经网络领域,包括以下步骤:S1、构造原始生成对抗网络模型;S2、构造沃瑟斯坦距离,作为对抗网络模型的评判指标;S3、初始化随机噪声,输入生成器中;S4、准备好行人图像数据集,输入判别器中训练;S5、将行人检测操作得到的损失函数输入生成器进行后续训练。本方法构建的基于WGAN模型的行人检测方法,引入沃瑟斯坦距离,能够评价整个网络的训练质量,同时通过将行人图像数据集输入判别器中,不断训练判别器的能力,从而能够在复杂的道路图像中准确地判别行人的准确位置。