摘要
干涉成像为突破衍射极限成像带来了可能,然而目前干涉成像系统的子孔径阵列通常固定不变,导致图像频谱获取不足、灵活性差,阻碍了成像系统性能的提升。此外,干涉图像的复原方法面临复原速度慢、复原品质差等难题。文章利用动态变阵的方法解决迈克尔逊干涉成像由于孔径稀疏且固定导致的频谱获取不足、灵活性差的问题,进而进一步地利用深度学习的方法,设计了一种干涉成像的图像复原算法,提高图像复原品质和速度。实验结果表明:动态变阵可有效提高稀疏孔径迈克尔逊干涉成像的频谱获取能力,基于深度学习的网络模型可以显著提高图像的复原品质,复原图像峰值信噪比提升5 dB,复原时间提升两个数量级。总之,文章所提的变阵方案和基于深度学习的图像复原方法可以获得高品质的复原图像,在成像领域具有一定的应用潜力。
- 单位