摘要

研究了一种基于松组合的视觉惯性即时定位与同步构图(SLAM)方法。针对视觉特征点匹配率低问题,研究基于ORB(Oriented FAST and Rotated BRIEF)特征点的提取方法;基于ORB-SLAM的输出,结合SINS提出了一种具有回环检测功能的SLAM/SINS组合方法。利用最小二乘法估计视觉SLAM算法的尺度因子;构建SLAM/SINS的非线性卡尔曼滤波器,将视觉SLAM系统输出的位置信息经过尺度变换后作为观测量进行卡尔曼滤波,修正惯导的误差。最后利用标准数据集证明与开源的SLAM算法进行对比,结果表明,所提出的算法有比较高的定位精度,并且在移动设备上开发了增强现实软件,以增强现实为实验手段验证在较大的空间范围和环境干扰下,这种组合方法具备较好的漂移消除能力。

全文