新冠疫情及建成环境对公交客流量的影响模型

作者:傅志妍; 高于越; 陈坚*; 陈琦
来源:交通运输系统工程与信息, 2023, 23(01): 207-215.
DOI:10.16097/j.cnki.1009-6744.2023.01.022

摘要

为揭示新冠疫情背景下公交客流量变化的空间影响因素,以疫情前后公交站点层面客流变化量为因变量,以建成环境、病毒感染情况及病毒传播途径等指标为自变量,构建新冠疫情与建成环境对公交客流量共同影响的线性回归(Ordinary Least Squares, OLS)模型与梯度提升回归树(Gradient Boosting Regression Trees, GBRT)模型。以广州市为实证对象,基于公交IC卡数据、兴趣点数据(Point of Interest, POI)及道路网络数据等多源异构数据进行模型实证分析。结果表明:考虑非线性效应的GBRT模型比OLS模型具有更好的拟合度;同时,常规公交站点的公交线路数量(22.02%)和到市中心距离(13.56%)是影响疫情背景下公交客流量变化的最重要因素,片区病毒感染与传播情况对疫情防控常态化时期的公交客流量作用有限,居民日常公交出行已经从疫情的影响下逐渐恢复。