摘要

在传统激光主动成像系统的基础上,结合目标识别技术搭建了一个激光主动成像识别系统实验平台,用于研究激光主动成像后的目标识别。介绍了实验平台的工作原理,基于Hu矩特征的双隐含层BP神经网络算法以及实验处理流程和实验结果。特征量由7个不变Hu矩构成,通过240张原始目标样本库对由136个权值系数构成的双隐含层BP神经网络算法进行了训练。利用训练好的双隐含层BP算法对黑夜条件下远处的运动目标--43式冲锋模具枪进行了实验研究,成功获得了清晰的红外激光主动成像效果。实验显示对450m处2 740帧和550m处2 420帧激光主动成像图像的统计识别率达到了68.87%和72.11%,其中旋转变换下的统计识别率可达80.05%和84%,好于仿射变换的识别效果。