摘要
由于在深度卷积网络中,深度估计的最终结果往往只利用到了网络的高层特征信息,对于底层特征的信息难以利用。为了解决这个问题,提出融合多层次特征的CNN(Convolutional Neural Network)深度估计方法。高层特征一般包含了图像整体的空间结构信息,而底层特征往往会包含大量的物体细节信息。网络对于底层特征的信息利用不足,造成深度估计的效果比较模糊。为了解决这一问题,采用融合多层次特征的方法,通过设定特定的网络结构,结合反卷积和池化方法,融合不同层次的CNN特征,使得网络能够同时利用底层与高层信息进行深度估计。通过在KITTI与ApolloScape数据集上的实验证明,该方法有效地提高了深度估计的精度。
-
单位武汉工程职业技术学院; 武汉理工大学; 鹏城实验室