摘要
原始的Tri-training算法在三个分类器给出的分类结果均不同时,默认第一个分类器给出的分类结果为分类器模型的最终结果,这在一定程度上有可能会降低分类器在这种情况下的分类精度。本文提出一种基于平时优秀思想的投票机制算法,该算法避免了默认将第一个分类器给出的结果作为分类器模型的分类结果这种片面的情况,并利用其对哈工大中文问句集和本文扩展问句集进行分类实验。结果表明,本文算法有良好的适应性,且分类正确率明显提高;适当增大训练集和未标记样本数据,可以增强分类器的泛化能力,从而使分类正确率提高。
- 单位