摘要

多语言问答是自然语言处理领域的研究热点之一,其目的是给定不同语种的问题和文本,模型能够返回正确的答案。随着机器翻译技术的快速发展及多语言预训练技术在自然语言处理领域中的广泛应用,多语言问答也取得了较快的发展。文中首先系统地梳理了当前多语言问答方法的相关工作,并将多语言问答方法分为基于特征的方法、基于翻译的方法、基于预训练的方法和基于双重编码的方法,分别介绍了每类方法的使用和特点;然后系统地探讨了当前多语言问答任务的相关工作,将多语言问答任务分为基于文本的多语言问答任务和基于多模态的多语言问答任务,并分别给出每个多语言问答任务的基本定义;接着总结了这些任务中的数据集统计、评价指标,以及涉及的问答方法;最后展望了多语言问答的未来发展方向。