摘要
车道线检测是智能辅助驾驶的核心问题,研究基于深度学习的车道线激光精准检测方法,提高车道线检测精度。将激光雷达安装在待检车辆上,用来扫描物体返回脉冲,通过激光雷达的回波脉冲宽度提取车道线与路面区分度的特征,结合深度学习方法,构建新型多尺度全卷积神经网络的车道线检测模型,融合特征图对车道线分割,实现车道线精准检测。实验结果表明,在多场景条件下,本方法的漏检率、误检率均低于传统方法,平均检测合格率96%,交互比也远远高于传统方法,平均耗时低至51 ms,且变化态势平稳,说明本方法在不同场景中车道线图像分割处理效果较好,车道线的检测效率较高,车道线检测的精度较高。
- 单位