摘要
针对疫情背景下,在一些人流密集场所进行体温筛查或身份识别,当待检测对象快速通过时,人脸检测实时性不高的问题,提出了一种改进Yolov5模型的实时人脸检测算法。该算法首先对骨干网络层进行轻量化改进并引入注意力机制减少冗余信息;其次修改了检测层网络结构,增加了对小目标人脸及倾斜人脸检测的适应性;随之使用Focal EIOU损失函数代替Yolov5原始损失函数中的GIOU损失函数来计算定位损失,有效解决了预测框在目标框内部或预测框与目标框大小一致时无法精确定位的问题。实验结果表明:提出的实时人脸检测算法检测精度达到97.2%,检测速度达到66.7 f/s,相较于原始Yolov5算法,检测精度提升了19.7%,检测速度提升了24 f/s,满足实时人脸检测要求,同时对于黑暗环境及不同表情姿态人脸检测也有较好的适应性。
-
单位西安工业大学; 机电工程学院; 内蒙古北方重工业集团有限公司