摘要

针对YOLOv4在自建的汽车钢铁零件表面缺陷数据集中检测精度不足的问题,利用深度学习的优势,提出一种基于改进YOLOv4的汽车钢铁零件表面缺陷检测方法。首先采用加权K-means算法确定初始anchors预选框,增强anchors框和特征图尺寸的匹配精度,提高检测效率;然后在YOLOv4主干网络的残差单元中引入SE模块,增加有用特征的权重,抑制无效特征的权重来提高检测精度;最后在76×76的特征图后连接RFB-s模块,增强对小目标信息的特征提取能力。实验结果表明,针对自建汽车零件表面缺陷数据集有无缺陷单类检测问题,改进算法比原始YOLOv4的m AP50值提高了4.3个百分点,对小目标具有更好的检测效果。这说明改进算法能满足针对特定的汽车钢铁零件表面缺陷检测问题下的检测速度和精度要求,有效解决了实际问题。针对COCO数据集多分类问题,改进后模型的m AP50值比原始YOLOv4提高了0.2个百分点,FPS值达到20,说明改进算法能够迁移到其他数据集,验证了该算法的泛化性。