融合信息反馈共享与蜉蝣搜索机制的樽海鞘群算法

作者:李克文; 耿文亮*; 张敏; 王晓晖; 柯翠虹
来源:计算机应用研究, 2023, 40(03): 696-724.
DOI:10.19734/j.issn.1001-3695.2022.07.0363

摘要

针对樽海鞘群算法(SSA)收敛速度慢和易陷入局部最优的问题,提出了一种融合信息反馈共享与蜉蝣搜索机制的改进樽海鞘群算法。使用Piecewise映射的方法进行种群初始化,使初始樽海鞘种群更均匀的覆盖可行域空间;采用信息共享机制,提出辅助领导者策略,改进领导者位置更新公式,增强全局搜索能力;利用进化学说以及正负反馈调节的思想,通过变异操作和自然选择原则选取更优领导者,从而提高搜索精度;最后,提出蜉蝣搜索机制,选取蜉蝣算法的交配公式,优化追随者位置迭代公式,使算法在后期更快收敛。通过在12个基准测试函数的多个维度以及17个CEC测试函数的实验,证明了改进樽海鞘群算法的综合性能,并通过消融实验验证了改进策略的有效性,实验结果表明,改进算法在收敛速度以及搜索精度上具有明显的优势。