摘要
考虑到工业过程中不同数据结构特征的提取方式可能会影响质量监控性能,提出了一种融合过程数据集全局与局部结构特征的集成质量监控(Ensemble Learning based Multiple Data Structures Quality Monitoring,E-MDSQM)方法。首先,构建偏最小二乘(Partial Least Square,PLS)、邻域保持回归(Neighborhood Preserving Regression,NPR)、局部全局主成分回归(Local and Global Principal Component Regression,LGPCR)3种基础模型,分别描述过程数据的全局结构、局部拓扑及局部全局混合结构信息;然后,基于一种新的监控指标,采用遗传优化算法求得最优权重,集成融合各统计量并确定控制限;最后,通过田纳西-伊斯曼(Tennessee-Eastman Process,TE)过程仿真,评估集成模型的监控效果,并与PLS、NPR、LGPCR 3种基础算法比较,实验结果表明该集成模型取得了较好的综合效果。
- 单位