摘要

针对传统双谱难以有效处理强噪声干扰以及相关熵运算量大的问题,提出了一种基于不完全Cholesky分解相关熵和双谱分析的轴承故障诊断方法。该方法在不求出核矩阵的情况下,首先利用不完全Cholesky分解算法和核函数,计算核矩阵的低秩分解下三角矩阵;其次,利用Gini指数选取下三角矩阵的主分量,利用下三角矩阵的主分量计算核矩阵的低秩近似矩阵,进而计算信号的相关熵;最后,计算振动信号相关熵的双谱,根据相关熵的双谱特征识别轴承故障。通过不完全Cholesky分解算法和Gini指数计算信号的相关熵,不仅压缩了数据量,突出了轴承故障瞬态冲击特征,有效抑制了噪声的影响,而且提高了计算效率,减少了计算机内存占用量。通过仿真和试验轴承故障振动信号分析结果表明:强背景噪声会造成传统双谱故障诊断方法失效,而基于相关熵和双谱分析的轴承故障诊断方法,能在强噪声干扰背景中提取轴承故障瞬态冲击特征,准确识别轴承故障,其性能优于传统双谱和小波变换域双谱,为一种轴承故障诊断的有效方法。

全文