摘要
目的针对已有网络对于卷积特征图利用率低下,从而导致高倍数图像重建质量不高的情况,提出一种多尺度稠密卷积网络(SRMD)。方法对SRDenseNet的稠密连接模块进行改进,去除批规范化层,参考已有网络,设计多尺度特征提取层和1×1的信息整合层,从而构成多尺度稠密卷积模块。SRMD通过一个多尺度特征提取层堆叠64个底层特征图,再由8个多尺度稠密卷积模块经过稠密连接堆叠1024个特征图,最后通过信息整合和子像素卷积模块输出超分辨率重建图像。结果在Set5,Set14,B100和U100数据集上进行测试,SRMD重建图像的峰值信噪比分别为30.1570,26.9952,25.7860, 23.4821 dB,结构相似性分别为0.8813,0.7758,0.7243,0.7452。结论与已有网络相比,SRMD与DRCN,VDSR表现相当,优于SRDenseNet和BiCubic方法。
- 单位