摘要

针对基本果蝇优化算法收敛速度慢、求解精度低、易于陷入局部极值以及算法候选解不能取负值等不足,提出一种用于解决约束优化问题的改进果蝇优化算法.该算法利用果蝇个体历史最佳记忆信息和种群全局历史最佳记忆信息构建多策略混合协同进化的搜索机制,以达到有效平衡算法的全局探索与局部开发的目的,同时也能够较好地避免算法的早熟收敛问题;通过种群最优信息的实时动态更新和局部深度搜索策略的引入,进一步提高该算法的收敛速度和收敛精度.采用13个基准测试函数和2个工程优化问题来验证所提出算法的可行性与有效性,仿真实验结果表明,与其他典型智能优化算法相比,所提出的优化算法具有全局搜索能力强、稳定性好、收敛速度快、收敛精度高等优势,可有效解决复杂的约束优化问题.

全文