当n≥3时,笛卡尔积图Cn×P2是一个多面体图,也称为n棱柱,其中Cn为n长圈,P2为2长路。令G是一个n棱柱的平面嵌入图,k是正整数,若对任意的正整数i(0≤i≤k),从图G中任意删除掉i个两两不交的偶面所得到的图有完美匹配,则称图G是k-共振的。首先得到n棱柱完美匹配数的计算公式;然后对n棱柱的共振性进行讨论,得到了n棱柱是1-共振、2-共振的和k-共振的(k≥3)。