摘要
深度无线传感组合网络中的近邻路由节点入侵具有载荷快速变化性,难以对新出现的攻击类型和网络异常行为进行有效识别,因此提出一种基于自适应卷积滤波的网络近邻入侵检测算法。在深度无线传感组合网络的传输信道中进行网络流量采集,构建网络入侵信号模型,在时间和频率上分析网络入侵信号的能量密度和攻击强度等特征信息,构建自适应卷积滤波器进行网络传输信息的盲源滤波和异常特征提取;采用联合时频分析方法进行网络近邻入侵特征信息的频谱参量估计,根据频谱特征的异常分布状态进行无线传感组合网络近邻入侵检测。仿真实验结果表明,采用该方法进行网络入侵检测的准确率较高,对未知的网络流量样本序列具有较高的识别能力和泛化能力,且所提算法优于传统的HHT检测算法、能量管理检测方法。
-
单位集美大学; 集美大学诚毅学院