摘要

形状判别是苹果外观品质检测中不可缺少的内容。本文先后采用主动形状模型(ASM)和基于傅立叶描述子的神经网络方法进行苹果形态分级。实验结果表明:传统神经网络方法的判别准确率为83.3%左右,而ASM方法的分级效果较好,对苹果果形的判别准确率高达95%,模型与实际对象匹配的时间不超过2s,且直观性强、鲁棒性好,具有较好的灵活性,能够满足苹果实时分级的需要。