摘要

基于局部型四维参数的函数,采用克里金代理模型和遗传-粒子群(GA-PSO)优化算法,开展大位移U型电热驱动器优化设计研究.建立U型电热驱动器的多物理场仿真模型并进行实验验证.发现在不同电压下,电热驱动器仿真位移与实验位移曲线一致,从而保证克里金模型中样本数据来源的可靠性.搭建ANSYS和MATLAB联合自动仿真平台以解决克里金模型中样本数据的批量采集问题.基于该平台,采用简单随机抽样的方法,得到不同采样点下电热驱动器的位移,从而形成样本数据.根据样本数据建立克里金模型并基于该模型采用遗传-粒子群算法进行参数优化.研究结果表明,克里金模型能代替有限元模型准确预测驱动器的位移;控制驱动器形状的4个关键参数与位移成单调关系;经形状优化后,18 V电压下U型电热驱动器的位移提高35.2%.