近红外光谱测定小麦粉常规营养成分的模型优化

作者:高慧宇; 王国栋; 赵佳; 王竹*
来源:中国食物与营养, 2021, 27(05): 30-34.
DOI:10.19870/j.cnki.11-3716/ts.2021.05.003

摘要

目的:应用近红外光谱(NIR)结合偏最小二乘法(PLS)建立小麦粉常规营养成分蛋白质、水分和脂肪的含量预测模型,并选择最佳模型。方法:收集117份小麦粉样品的近红外光谱,化学法测定蛋白质、水分和脂肪的含量,利用主成分分析(PCA)随机分组,81份样品用于构建模型、36份样品用作验证模型的预测能力。探讨波长范围和光谱预处理方法对所建模型预测能力的影响。结果:3个营养成分预测能力最好的模型分别是:对于蛋白质,预处理采用矢量归一化(SNV),波长选取7 505.9~5 446.2 cm-1和4 605.4~4 242.8 cm-1,预测模型的RPD值是7.02;对于水分,无预处理,波长选择全谱12 800~3 960 cm-1,模型的RPD值是6.83;对于脂肪,无预处理,波长在9 000~4 000 cm-1,模型的RPD值是5.06。结论:近红外光谱法可以实现对小麦粉常规营养成分的快速预测,通过选择波长范围和光谱预处理方法可以显著提高模型的预测能力。

  • 单位
    中国疾病预防控制中心营养与健康所

全文