摘要
针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network, TCN)和双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络的预测方法。首先,将TCN处理时间序列问题的优势应用到态势预测上学习态势值的序列特征;随后,引入注意力机制动态调整属性的权值;然后,利用BiLSTM模型学习态势值的前后状况,以提取序列中更多的信息进行预测;利用粒子群优化(particle swarm optimization, PSO)算法进行超参数寻优,提升预测能力。实验结果表明,所提预测方法的拟合度可达0.999 5,其拟合效果和收敛速度均优于其他模型。
-
单位空军工程大学防空反导学院