摘要
为了更加合理地求解需求可拆分的车辆路径问题(SDVRP),克服传统先路径后优化两阶段的求解方法容易陷入局部最优的缺点,以及解决智能优化算法在优化阶段未能将竞争与协作有机地融合为一体的问题,以配送路径最短和配送车辆最少为优化目标,提出了一种改进的金字塔演化策略(IPES)。首先,以金字塔为基础,提出了求解SDVRP的编码、解码方式以及层级间的协作策略;其次,根据遗传算法的随机、"适者生存"的高度并行、自适应等特点,以及金字塔结构各层分工不同,设计了一种适合SDVRP的自适应邻域算子,使得算法能够快速收敛到最优;最后,得到最优解。相较于分段求解算法、聚类算法、粒子群算法、人工蜂群算法、禁忌搜索算法,四个仿真实验的结果表明,在求解各案例的最优路径时,所提IPES的求解精度分别至少提升了0.92%、0.35%、3.07%、9.40%,验证了在求解SDVRP时,IPES具有良好的性能。
- 单位