摘要

一种基于深度学习方法的长短期记忆(Long Short-Term Memory,LSTM)模型被用来预测核电站异常工况,以有效解决核电安全系统中工况参数预测的问题。该模型利用LSTM对于长时间序列数据处理的优势,关注异常工况中核心参数的预测。根据异常工况的预测需要,LSTM模型预测功能的训练通过历史运行数据集和滚动更新方法(Rolling Update,RU)完成,并且通过测试数据集进行了实验验证。实验结果表明,此模型能够在事故工况下有效地预测核心参数变化趋势,损失值可低至3.7×10-6。同时在小型失水事故(LOCA)的模拟工况预测中,LSTM模型能够对存在差异的同一类事故做出准确的工况走势预测,展现了其对于同类型事故工况的良好适应性。与传统数理统计方法和传统RNN方法的对比结果证明,基于LSTM的深度学习方法能够有效提升异常工况预测的准确度和时效性。