摘要

随着移动互联网技术的迅速发展,传统的推荐系统已不能很好地适应基于位置的推荐服务,同时也面临隐私泄露的问题.本文针对上述问题,首先提出一种分布式隐私保护推荐框架,并利用差分隐私保护理论,设计基于分布式框架的奇异值分解推荐算法,同时利用保序加密函数实现用户请求位置的保护.理论分析和在两个真实的数据集上的实验表明,本文提出的方法不仅具有较强隐私保护能力,同时相比传统的几种推荐算法,也具有较好的推荐性能.