摘要
为解决风光互补并网发电功率预测问题,针对前馈(BP)神经网络容易陷入局部最优而导致预测精度降低的问题,提出了一种自适应樽海鞘算法(ASSA)优化BP神经网络的风光互补并网发电功率预测模型。首先,在标准的樽海鞘算法(SSA)中引入动态权重策略和变异算子构建ASSA。其次,引入BP神经网络算法,构建BP神经网络的风光互补并网发电功率预测模型。最后,通过ASSA算法优化BP神经网络的权值和阈值,提出ASSA-BP的风光互补并网发电功率预测模型。仿真结果表明,利用ASSA-BP模型预测发电功率数据的相对误差小于BP模型预测数据的相对误差。ASSA-BP和SSA-BP的模型平均绝对误差数值更小,ASSA-BP模型的平均绝对误差最小,ASSA-BP模型的预测稳定性最强。该预测模型较传统风光互补并网发电功率预测方法有更高的精确度。
- 单位