针对互联网推荐系统中存在严重的隐私保护问题,在传统推荐系统算法的基础上,引入项目属性相似度的概念,并提出了一种具备保护用户隐私功能的新型推荐系统.系统利用用户的历史评价和推荐系统中项目的属性信息,使用不采集用户个人信息的协同过滤推荐算法,计算出用户对未评价项目的评分预测,形成了一种能够保护个人隐私的推荐算法.结果表明,与其他推荐算法相比,本文算法在推荐准确度和用户隐私保护程度上取得一个较好的平衡,具有较高的实用价值.