摘要

精确的输电线路覆冰厚度预测,可以对线路除冰工作进行科学指导,及时调整电力系统除冰计划。覆冰厚度容易受到温度、湿度和风速等气候因素影响而具有不确定性和非线性。提出一种基于历史统计数据的输电线路覆冰厚度预测模型,使用变分模态分解(VMD)对覆冰厚度数据进行分解,得到具有不同中心频率的子分量;采用改进灰狼算法(IGWO)对最小二乘支持向量机(LS-SVM)中的参数惩罚因子c和核函数宽度δ进行寻优;对于各子分量分别建立最小二乘支持向量机(LS-SVM)预测模型,并集成为总预测值。通过仿真比较,验证了所提模型预测精度更高。