摘要
随着网络数据流量的快速增长,需要高效的流量分类技术来实现网络管理、流量控制和安全检测。传统基于端口和有效负载的流量分类方法准确率低,无监督学习方法往往仅采用单一的聚类算法对数据进行聚类分析,且较少研究对数据本身的处理。为了解决上述问题,提出了先运用GainRatio信息增益率方法对原始数据进行降维处理,再将降维后的数据进行聚类的方法。实验结果表明:提出的方法不仅有效地提高了运行效率,而且随着聚类个数的增加,也明显地提高了高准确率的收敛速度。
- 单位
随着网络数据流量的快速增长,需要高效的流量分类技术来实现网络管理、流量控制和安全检测。传统基于端口和有效负载的流量分类方法准确率低,无监督学习方法往往仅采用单一的聚类算法对数据进行聚类分析,且较少研究对数据本身的处理。为了解决上述问题,提出了先运用GainRatio信息增益率方法对原始数据进行降维处理,再将降维后的数据进行聚类的方法。实验结果表明:提出的方法不仅有效地提高了运行效率,而且随着聚类个数的增加,也明显地提高了高准确率的收敛速度。