摘要

基于无线传感器网络,建立了春秋茬温室番茄光合速率预测模型。在2014年秋季与2015年春季,采用无线传感器网络自动获取温室环境因子信息,包括空气温湿度、土壤温湿度、光强与CO2浓度。同时采用LI-6400XT型光合仪测定植物的单叶净光合速率,利用叶室小环境来扩展数据范围。将采集到的温室环境信息作为输入参数,单叶净光合速率作为输出参数,利用神经网络建立番茄光合速率预测模型。为了提高模型的预测精度,首先使用Z分数对输入参数进行标准化,然后对标准化后的数据进行主成分分析;其次,根据各主成分的累积贡献率选取主成分,然后经过K折交叉检验后建立神经网络预测模型。结果表明,采用2014年秋季数据建立的预测模型,相关系数为0.99;2015年春季为0.95;用两季数据联合建立的通用模型,相关系数为0.85。利用春秋茬联合数据建立的温室番茄光合速率预测模型通用性较好,可以为日光温室CO2气肥精细调控提供理论支持。