摘要

针对现有网络模型复杂度高以及消耗大量计算资源等问题,本文提出一种多任务自适应知识蒸馏的语音增强算法,旨在解决复杂模型在时间和硬件等计算成本方面带来的问题,同时提高语音增强算法的性能。首先,采用知识蒸馏的思想来解决现有的语音增强模型过于庞大、参数多造成计算成本上升问题;其次,充分考虑不同时频单元之间的差异,引入加权因子来优化传统损失函数提升学生网络性能;为了避免教师网络预测的不确定性影响学生网络的性能,构建多任务自适应学习的知识蒸馏网络,可以更好地利用不同任务之间的关联性优化模型。实验仿真结果表明,所提出的算法在减少参数量、缩短计算时间的同时,还能有效提高语音增强模型的性能。