摘要
为寻求反映区域交通需求特性机理的运量预测方法,针对一般区域运量数据小样本的问题及其诱发因素的随机性和不可控制性,在分析区域交通需求特性及现有运量预测方法缺陷的基础上,采用以统计学习理论为基础的专门研究小样本情况下机器学习规律的支持向量机,建立了区域运量预测支持向量机模型.该模型通过预测值与统计值不断交互,实现区域运量的滚动预测,避免了建立和求解非线性函数的过程.以京津冀区域客运量预测为例,验证建立模型的合理性.结果表明,基于支持向量机的区域运量滚动预测较传统的预测方法提高了预测精度.
- 单位