摘要

轴承复合故障类型多样,且部分故障的特征频率相近噪声污染严重。采用经验模态分解(EMD)的方法,在强噪声背景下会引起相近频率故障成分的无法识别,同时也难以提取微弱的故障信号。由此,提出一种基于能量聚集性的轴承复合故障诊断方法。首先借助离散余弦变换(DCT)的频域能量聚集性和奇异值分解(SVD)的时域能量聚集性,对轴承复合故障信号进行预处理,实现降噪并分离频率相近的微弱故障信号。然后对分离出来的不同故障信号进行经验模态分解,去除伪分量,对剩余的本征模态函数进行频谱分析。最后,根据本征模态函数的频谱诊断故障。仿真信号和实测轴承故障诊断信号分析表明,与直接使用EMD进行轴承复合故障诊断相比,该方法能够...

  • 单位
    中国人民解放军陆军工程大学