摘要
针对特定场景交通标志精度低与识别速度慢的问题,基于交通标志边缘信息与卷积神经网络,提出了一种交通标志图像识别T-YOLO算法。该算法基于YOLOv2算法检测思想,融合残差网络、卷积层填充0等结构,下采样舍弃池化层改用卷积层,并提取边缘信息与上采样以提升精度,设计7层特征提取网络以缩短识别速度,随后使用Softmax函数归一化实现多分类,并采用批量归一化、多尺度训练等方法缩短训练时间。实验表明,该算法真实有效,图形处理单元(Graphic Processing Unit,GPU)平台上最快检测速度13. 69 ms/frame,每帧缩短9. 51 ms,最高平均准确率97. 3%,提高7. 1%,满足实时高精度识别要求。与其他算法相比,该算法在交通标志识别速度与精度方面均有大幅提高,更加适用于现实场景,更贴近车载嵌入式系统。
- 单位