摘要

视觉是人类与外界交互并获取信息的重要方式。为了研究在不同条件下人类的视觉行为,本文采用了混合高斯-隐马尔可夫模型(GMM-HMM)对扫视过程中的眼动路径进行建模,并提出了一种新的模型优化方法——时移分段法(TSS)。TSS方法可突出眼动序列中时间维度的特征,提升模式识别结果,增强模型稳定性。本研究对多维特征模式识别采用了线性判别分析(LDA)方法,以评价各模型的合理性及识别的准确性。全文共进行了四组对比试验,第一组应用了GMM-HMM模型对眼动路径进行建模分类,三分类准确率均值可达到0.507,大于三分类机会概率(0.333);第二组试验应用TSS方法,分类准确率均值提高至0.610;第三组将GMMHMM与TSS结合,分类准确率均值达到0.602,且相较于第二组模型更稳定;最后,将模型分析结果与眼跳(SA)等特征分析结果进行比较,建模分析方法远好于基础信息分析方法。同时,通过对三类任务特性分析,结果显示,自由查看任务特异性较高,而对象搜寻任务的敏感度较高。综上所述,GMM-HMM模型应用在眼动模式识别领域有较好的特征提取效果,引入TSS方法可以加强眼动特征差异,尤其对搜寻类任务的眼动路径识别有更好的优势,也为单一状态眼动序列提供了新的解决方案。

全文