基于深度学习的推荐系统已成为学界发展的趋势,针对其因数据稀疏而造成的预测精度下降的问题,提出了一个基于评论信息的深度协同过滤推荐系统.首先,嵌入表示用户或物品的评论文本,将其送入BiGRU层以增强长文本中前后单词的关联性;然后,采用双层注意力机制来分配不同评论对于中间表征向量贡献度的权重;最后,利用概率矩阵分解法融合用户及物品表征向量,从而预测出用户对物品的评分.实验结果表明,此模型可以显著减少评分预测的误差,有效提高推荐的精度.