摘要
现有基于深度学习的检测算法,虽然有效提高了高分辨率遥感图像中的舰船目标检测准确率,但是由于其网络结构非常复杂,导致计算量和参数量巨大。为了满足实际应用中的实时性要求,采用异构硬件加速,并进行了相应的算法优化。为了更好地贴合硬件,首先在YOLOV3算法的基础上,通过对主干网络进行改进,设计并实现了YOLOV3&MobileNetV3轻量化网络,这样可以极大地削减网络的参数规模和计算量。然后在现场可编程逻辑门阵列(FPGA)平台,通过设计卷积神经网络加速器,实现了高效的轻量化神经网络。最后实验结果表明,改进的神经网络在自主研发的FPGA加速架构上,在测试集中的船舰目标的检测达到了150帧每秒的检测速度以及0.872的F1值,能够更加快速并有效地检测船舰目标。
-
单位自动化学院; 天津工业大学