摘要
独立向量分析(IVA)是解决频域卷积盲分离排序模糊性最好的方法之一,但存在迭代次数较多、运算时间较长、分离效果易受分离矩阵初值影响的局限性。该文提出一种基于步长自适应的IVA卷积盲分离算法,该算法使用特征矩阵联合近似对角化(JADE)算法对分离矩阵进行初始化,并对步长参数进行了自适应优化。JADE初始化能够使分离矩阵具有合理的初值,避免局部收敛的情况;步长的自适应优化能够显著提升算法的收敛速度。仿真结果表明,该算法进一步提升了分离性能,并显著缩短了运算时间。
- 单位
独立向量分析(IVA)是解决频域卷积盲分离排序模糊性最好的方法之一,但存在迭代次数较多、运算时间较长、分离效果易受分离矩阵初值影响的局限性。该文提出一种基于步长自适应的IVA卷积盲分离算法,该算法使用特征矩阵联合近似对角化(JADE)算法对分离矩阵进行初始化,并对步长参数进行了自适应优化。JADE初始化能够使分离矩阵具有合理的初值,避免局部收敛的情况;步长的自适应优化能够显著提升算法的收敛速度。仿真结果表明,该算法进一步提升了分离性能,并显著缩短了运算时间。