摘要
水轮机组在运行过程中由于受到水力、机械、电磁等因素的干扰,极易诱发故障,从而影响机组安全稳定运行.文中在水轮机组运行噪声信号特征提取基础上,提出了一种基于核主成分分析(Kernel PCA)、改进的粒子群算法(particle swarm optimization, PSO)与支持向量机(support vector machine, SVM)的水轮机组噪声信号故障检测方法.该方法首先对水电站现场采集到的原始噪声信号提取时域和时频域共13维特征,克服了特征量单一的局限性,再利用核主成分分析法(KPCA)对所提取出的特征向量降维,然后利用改进的粒子群算法(PSO)对SVM模型进行最优寻参,利用优化后的支持向量机(SVM)对提取的特征进行故障检测,完成对水轮机组常见的3种运行状态的识别.结果表明:采用基于KPCA-PSO-SVM的故障检测方法,水轮机组运行状态的分类识别率为96.73%,比SVM算法、神经网络、KNN、随机森林等方法的识别准确度更高,证实了本方法的有效性.
- 单位