摘要
针对支持向量机在大规模样本学习时,学习速度慢,需要存储空间大等问题,提出了一种基于层次聚类的支持向量机训练算法,即在标准SVM向量算法中加入CURE聚类算法。该方法首先通过聚类方法从簇中选择分散的对象,根据一个收缩因子收缩或移动它们,从而产生最有可能成为支持向量的一组向量组成训练子集,接下来再用SVM训练方法构建一个最优SVM分类器。实验证明,该算法使SVM训练时间大为缩短,在不影响精确度的前提下使算法的效率得到大幅度的提高。
- 单位
针对支持向量机在大规模样本学习时,学习速度慢,需要存储空间大等问题,提出了一种基于层次聚类的支持向量机训练算法,即在标准SVM向量算法中加入CURE聚类算法。该方法首先通过聚类方法从簇中选择分散的对象,根据一个收缩因子收缩或移动它们,从而产生最有可能成为支持向量的一组向量组成训练子集,接下来再用SVM训练方法构建一个最优SVM分类器。实验证明,该算法使SVM训练时间大为缩短,在不影响精确度的前提下使算法的效率得到大幅度的提高。