摘要
群体行为的多层次深度分析是行为识别领域亟待解决的重要问题。在深度神经网络研究的基础上,提出了群体行为识别的层级性分析模型。基于调控网络的迁移学习,实现了行为群体中多人体的时序一致性检测;通过融合时空特征学习,完成了群体行为中时长无约束的个体行为识别;通过场景中个体行为类别、交互场景上下文信息的融合,实现了对群体行为稳定有效的识别。在公用数据集上进行的大量实验表明,与现有方法相比,该模型在群体行为分析识别方面具有良好的效果。
-
单位中国航天科工飞航技术研究院; 郑州航空工业管理学院; 河南财经政法大学