摘要
基于深度学习在侧信道攻击中的应用,首先在Chipwhisperer平台中实现AES算法,在其加密过程中测量相应能量迹,再利用CPA技术分析得出兴趣点位置,并针对兴趣点做出模型训练。在卷积神经网络(CNN),长短时记忆网络(LSTM)和CNN_LSTM混合模型三种网络模型上,结合数据预处理技术训练同步和异步能量迹。实验结果表明三种模型同步状态下的准确率相当,另外在保证模型训练参数不变的情况下逐渐增大异步数据时,三个模型训练集和测试集的准确率都在减少,但新提出的混合模型下降速度变化是最慢的,在实验异步数加大到50时,仍可以保证准确率在90%之上,即几乎一条能量迹就可恢复出正确密钥。所以,CNN_LSTM模型可以更好地适应能量迹发生异步的情况。
- 单位