摘要
针对在城市轨道交通车站内,利用iBeacon技术进行指纹定位时存在匹配效率较低、定位精度不理想的问题,文中提出了一种基于GAWK-means的地铁车站指纹定位方法。离线阶段,根据指纹数据本身的离散程度进行K-means欧式距离权重优化以便更好地体现类内相似度,再将改进的K-means结合遗传算法,优化聚类结果以减少陷入局部最优。在线阶段,利用K近邻法将信号向量与最为接近的子指纹库匹配获得定位结果,通过平均定位误差对该方法整体性能进行评估。实验结果表明,在地铁车站离线阶段使用GAWK-means算法平均定位误差为1.52 m,相较于未聚类和传统K-means聚类,定位误差减少了0.41 m以上。
- 单位